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Software Goals

• Quality: 

• improve physics in simulation

• improve data/Monte Carlo agreement


• Quantity:

• improve throughput and increase statistics


• reduce resource requirements

• improve utilization of existing resource


• Two objectives are sometimes at odds

• Better simulations often require more CPU, GPU, Memory

• Balance the needs for more statistics vs. better simulation


• Yearly simulation workshops aimed at strategies for achieving these goals 
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Generators
‣ Cosmic-ray Air Showers:  
‣ CORSIKA (FORTRAN stand-alone)

‣ corsika-reader: IceTray reader for standard format

‣ CorsikaInjectorService (IceTop)

‣ DYNSTACK CORSIKA - Optimized Module with C++11 plugin


‣ Muons:

‣ MuonGun:  parametrization of flux of atm. muons under the ice.

‣ Requires updated parametrization


‣ Neutrinos:

‣ neutrino-generator: injects neutrinos, propagates them through Earth, 

forces interaction in detector volume.

‣ genie-icetray: detailed simulation of neutrino interactions with GENIE. 

(Used for low-energy simulations) 

‣ LeptonInjector / NuFSGen: weighted leptons+weights to account for 

flux models, interaction models, in-earth propagation, etc. 
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CORSIKA

DYNSTACK (Kevin Meagher UW-Madison) -  
Current generation module and weighting checked against standard (legacy) simulation.  
Not yet in production. Testing in grid. Included in next software release. 

Server socket configuration fixed; simulation now running efficiently with 4:1 CPU:GPU cores. S-frame 
contains all needed information for weighting (no need to query simprod database). Open call to get 
involved in developing biased sampling. 

IceTop -  
To do:  implementation of DYNSTACK module to do G4 tank simulation directly before discarding EM 
shower component.

CORSIKA8 (Antonio Augusto Alves Junior - KIT) -  
Development guidelines outlined in R. Engel et al., Comp.Soft. Big Sci. 3 (2019) 2. Once released, will 
replace current DYNSTACK library. 

Pending Tasks: 
• Implement IceTop module. We discussed a dedicated workshop with people involved. 
• Implement DYNSTACK biasing schemes. 
• Update DYNSTACK module to support CORSIKA8 (when released)
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What is the objective?

Speed, accuracy, and flexibility

Lepton Injector / Lepton Weighter  

• Current inconsistencies between LW and NuGen samples (possibly 
due to a bug in calibration file for LW).  

• Currently weighting Range+Volume mode simulations of the same 
flavor is not trivial.  

• More cross section splines tables have not yet been made available. 
Some discussion on storing LI info in LIC files vs. S-Frames.  

• LW needs some work in terms of documentation and user friendliness. 

(Carlos A. Argüelles , C.Weaver, B. Smithers, and A. Schneider)



SnowStorm MC for the GlobalFit
IceCube Brussels Meeting 2020 | Diffuse Parallel
Erik Ganster | 05/06/2020

• SnowStorm short: Continuos variation of nuisance
parameters (detector systematics) (blue) instead of
discrete sets for specific values (red)

Why new MC and why SnowStorm?

• Lots of changes/updates since last large-scale MC 
production (at least DiffuseNuMu is based on 2012  
MC):
� New ice models: Spice3.2.1
� New SPE templates
� New software tools
� …

¾Large collaborative effort to produce new MC sets 
using the most up-to-date software and simulation 
tools
� “Standard” signal MC + systematic sets
Æ see talk by Manuel

� SnowStorm MC:
� Novel treatment of detector systematics
� SnowStorm paper
Æ This talk + talk by Ben

¾Use SnowStorm MC with all its features for the 
upcoming GlobalFit
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SnowStorm

DOI: 10.1088/1475-7516/2019/10/048
Erik Ganster
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Efficient propagation of systematic uncertainties from calibration to 
analysis with the SnowStorm method in IceCube
M.G. Aartsen et al JCAP10(2019)048



SnowStorm MC for the GlobalFit
IceCube Brussels Meeting 2020 | Diffuse Parallel
Erik Ganster | 05/06/2020

SnowStorm Simulation Chain – SnowStorm

• Based on “standard” simulation chain

• Merge of signal+background I3MCTrees before any 
particle or photon propagation
Æ Ensures that all particles get treated/propagated 
with the exact same parameters/settings further on

¾Main SnowStorm simulation step:
¾ Particle (muon) propagation with PROPOSAL
¾ Photon propagation using CLSim

¾Perturbing the ice model properties for chunks of 
frames using the SnowStorm perturber
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Signal simulation:
LeptonInjector/NuGen

Background sim:
dCORSIKA

Particle and photon
propagation: Snowstorm
(PROPOSAL+CLSim)

Detector
simulation

L1 + L2 processing

Combination:
Polyplopia
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SnowStorm

Erik Ganster



Upgrade/Gen2 Simulation chain (Tom Stuttard) 

There is currently a working end-to-end simulation for upgrade but there are plenty of 
placeholders and hacks.

ClSim/PPC (DEgg, mDOM):
Currently limited to spherical sensors of comparable size to IceCube DOMs. 
• mDOM simulation modelled as flat disks on the surface of a sphere with 

wavelength and angular acceptance per PMT glass and gel taken into 
account.

• DEgg: currently modeled as 2 spherical PTMs.
     

    Noise:
No current plans to develop noise parameterization (as we did for IceCube 
DOMs). Instead generate GEANT4 noise simulations of radioactive decay and 
glass scintillation on the PTM and pressure sphere glass. The noise module 
would then just sample hits from these simulations.



DOM Simulation: 

PMTResponse uses PTM base class.  
Specific PTM Classes implemented: 

• HamamatsuR7081_02PMT  (IceCube IceTop PDOM)
• HamamatsuR5912_100PMT (DEgg)
• HamamatsuR15458_02PMT (mDOM)

DOM Launcher: electronics to be implemented in the future. Separate module. Readout 
electronics have been under development. Currently very simple placeholder in simulation for 
all new sensors: 

Merge pulses within 10ns.
10 ns pulse width for all pulses.

Realistic DOM frontend simulation and pulse reconstruction under development (Leander 
Fischer).

There has also been some development of GEANT4 OM models:
mDOM (Münster),DEgg (Chiba), and a generic system for many OM types (Nahee Park). 

Tasks: Lots of work to do. See task list in backup slides
We are incorporating upgrade simulation/software into general software calls. Alternating on topics.

Upgrade/Gen2



SCAP Recommendation 2018-9  
Efforts should continue in a highly focused manner in order to maintain workflows which can run efficiently on systems 
where IceCube can request resources. This requires work on the workflows themselves, but also on monitoring and job 

scheduling and on the handling of intermediate results.
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} CPU
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} CPU

The Shish Kabob
(Computing Resource Optimization)

• Optimizing the shish kabob: 
◦ Different parts of the simulation chain have different 

resource requirements. 
◦ CORSIKA is CPU-intensive and requires little 

RAM 
◦ Photon propagation run almost exclusively on 

GPUs 
◦ Detector simulation is CPU bound and requires 

more memory. 
• Things to keep in mind: 

• Running the whole chain on a GPU node will waste 
GPU resources and limit your throughput. 

• Intermediate storage: 
◦ breaking up chain requires transfering/storing 

intermediate files. 
◦ Reduce complexity in workflow 



Resource Utilization
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• Use of opportunistic resources has increased

• Combination of CPU-intensive datasets and GPU intensive datasets seems to utilize resources 

maximally.

• Simpler workflows better than complex DAGs 

• Longer tasks (but not too long)

• Reduce intermediate storage requirements, improved data compression (zstd)

File system outage



Original Optimization Improvement 
Factor

CPU 14714 3516 4.18

GPU 4451 336 13.25

• Strategies such as event 
oversampling and DOM oversizing 
can speed up performance by large 
factors


• Systematic timing effects and GPU 
efficiency currently prevent us from 
taking full advantage of DOM 
oversizing.

Optimization Schemes



Possible to simulate direct hole ice propagation given that we are doing oversize=1.

Oversizing speeds up photon propagation but with fast GPUs this actually leads to an 
underutilization of GPU since threads can’t be fed data fast enough and large memory usage 
resulting from frame buffering. 

Currently, most simulation use oversize=1 (except at HE) 

Optimization Schemes



GPU efficiency: 

One way to improve GPU utilization is to share a single ClSim server with multiple clients. One 
complication that arises in this model is a lack of determinism from random number generators for 
ClSim (multi-client) determinism

Jakob’s current solution is Random123 with an efficiency impact 40% 
but other possibilities include mall state non-cryptographic RNG.

Revisit DOM oversizing.
Introduces systematic errors in time distributions. 

 



• One of the issues with benchmarking and optimizing dataset configurations for GPU 
performance is the variance in GPU models.  

• Datasets that perform well on some models have a much worse performance on others. 

• Proposed solution for GPU utilization prediction:  

• Define a scaling factor for each model 

• Pyglidein runs benchmarks on GPUs to determine this ahead of time.  

• Check GPU model, refer to scaling factor.

Benchmarks and Optimization of Datasets 



Example: SnowStorm (Eric Ganster): 

optimized configuration on a subset of GPUs but efficiency varies widely depending 
on the GPU model. 



Zeroth order optimization: Energy Binning

• The total GPU runtime depends on the total deposited charge


• The total deposited charge is weakly dependent on the primary energy


• A current approach is to roughly estimate the maximum runtime of each job if 
we break the spectrum into energy bins

Predictive Resource Scheduling



• Low-wastage regression can improve memory 
allocation quality for IceProd jobs by nearly 50%.  

• Largest improvement when memory requirement can 
be predicted from upstream tasks  

• Black-box, online method: no knowledge of the task 
content or initial benchmarking needed  

• Next steps:  

• Present at HPCS 2019  

• Implement requirement prediction in IceProd2 
(who, when?)  

• Gather more log data from newer IceProd2 
releases (memory use wasn’t collected for nearly a 
year)  

• Investigate predictions based on dataset config 
(i.e. meta project version, generator, number of 
events, energy range, etc) 
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Choosing the size of the training set
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Fig. 6: Comparison of the memory allocation quality (MAQ) cumulative distributions (higher is better) achieved by different
combinations of allocation method and failure handling strategy. MAQ is computed per abstract task, where the first k% (with
respect to a job’s finish time in the logs) of the data are used for training and the rest for evaluation. The blue line shows the
MAQs achieved when applying the user estimates from the IceProd users.

system uses variable size job pilots which can be even larger
than av . However, further increasing av only increases the
over-sizing wastage generated by this strategy. We thus select
a value that is as large as necessary and as small as possible,
although in practice av needs to be choosen according to the
resource pool. We set the minimum allocation size al for LWR
to 100 Megabytes.

A. MAQ Distributions
First, we show the memory allocation quality that is

achieved on an abstract task level. Abstract tasks are a natural
unit of analysis since we train one prediction model per ab-
stract task. However, since abstract tasks differ in the amount
of resources allocated to them, we subsequently conduct an
aggregate analysis that weights the memory allocation qualities
by an abstract task’s share of the overall resource allocation.

Figure 6 shows the cumulative distribution of memory
allocation quality across abstract tasks. User estimates score
a median MAQ of 49%. The state-of-the-art method as dis-
cussed in [10] uses the maximum failure handling strategy
and achieves only a median MAQ of 43% but improves to
55% and 83% when trained on 10% and 50% of the data,
respectively. Our method achieves 84% median MAQ using
only 5% of the data for training. However, it turns out that
the state-of-the-art method improves to 81.7% median MAQ
when applying the exponential failure handling strategy, even
though this corresponds to a different loss function than the
first allocations are optimized for. Overall, the maximum-
strategy used in the original approach by Tovar et al. is not
recommendable, as it becomes competitive only when using
at least 90% of the log data for training.

Relative to the state-of-the-art, our advantage in MAQ stems
mainly from reducing over-sizing, as shown in Figure 7.
This is mainly due to the superior exponential re-allocation
strategy. Comparing to the modified state-of-the-art method
with exponential re-allocation, we have a larger advantage
with respect to under-sizing wastage, although scoring better
in both aspects. The potential to reduce under-sizing wastage

Fig. 7: Cumulative distribution of over-sizing and under-sizing
wastage (lower is better), relative to the amount of used
resources. This shows that the improvements of our method
stem mainly from reducing over-sizing wastage.

is most apparent in scenarios where input size correlates to
peak memory usage, as shown in Figure 8. Here, our linear
model can save significant amounts of resources by assigning
less memory to jobs with smaller inputs and avoid a significant
amount of failures by allocating more resources to jobs with
large inputs.

B. Effective Memory Allocation Quality

In this section, we evaluate the overall memory allocation
quality when weighting the MAQs of the individual abstract
tasks by their share of the allocated resources. In addition, we
simulate the cost of training by taking into account the wastage
resulting from relying on user estimates during the collection
of training data. We split the data again according to job finish
times, using the first k% for training and the rest for evaluation.
This corresponds to replacing user estimates with predictions
from the trained models after a training period.

Since the goal is to relieve users from the burden of having
to determine the memory requirements of abstract tasks, we do
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Fig. 6: Comparison of the memory allocation quality (MAQ) cumulative distributions (higher is better) achieved by different
combinations of allocation method and failure handling strategy. MAQ is computed per abstract task, where the first k% (with
respect to a job’s finish time in the logs) of the data are used for training and the rest for evaluation. The blue line shows the
MAQs achieved when applying the user estimates from the IceProd users.

system uses variable size job pilots which can be even larger
than av . However, further increasing av only increases the
over-sizing wastage generated by this strategy. We thus select
a value that is as large as necessary and as small as possible,
although in practice av needs to be choosen according to the
resource pool. We set the minimum allocation size al for LWR
to 100 Megabytes.

A. MAQ Distributions
First, we show the memory allocation quality that is

achieved on an abstract task level. Abstract tasks are a natural
unit of analysis since we train one prediction model per ab-
stract task. However, since abstract tasks differ in the amount
of resources allocated to them, we subsequently conduct an
aggregate analysis that weights the memory allocation qualities
by an abstract task’s share of the overall resource allocation.

Figure 6 shows the cumulative distribution of memory
allocation quality across abstract tasks. User estimates score
a median MAQ of 49%. The state-of-the-art method as dis-
cussed in [10] uses the maximum failure handling strategy
and achieves only a median MAQ of 43% but improves to
55% and 83% when trained on 10% and 50% of the data,
respectively. Our method achieves 84% median MAQ using
only 5% of the data for training. However, it turns out that
the state-of-the-art method improves to 81.7% median MAQ
when applying the exponential failure handling strategy, even
though this corresponds to a different loss function than the
first allocations are optimized for. Overall, the maximum-
strategy used in the original approach by Tovar et al. is not
recommendable, as it becomes competitive only when using
at least 90% of the log data for training.

Relative to the state-of-the-art, our advantage in MAQ stems
mainly from reducing over-sizing, as shown in Figure 7.
This is mainly due to the superior exponential re-allocation
strategy. Comparing to the modified state-of-the-art method
with exponential re-allocation, we have a larger advantage
with respect to under-sizing wastage, although scoring better
in both aspects. The potential to reduce under-sizing wastage

Fig. 7: Cumulative distribution of over-sizing and under-sizing
wastage (lower is better), relative to the amount of used
resources. This shows that the improvements of our method
stem mainly from reducing over-sizing wastage.

is most apparent in scenarios where input size correlates to
peak memory usage, as shown in Figure 8. Here, our linear
model can save significant amounts of resources by assigning
less memory to jobs with smaller inputs and avoid a significant
amount of failures by allocating more resources to jobs with
large inputs.

B. Effective Memory Allocation Quality

In this section, we evaluate the overall memory allocation
quality when weighting the MAQs of the individual abstract
tasks by their share of the allocated resources. In addition, we
simulate the cost of training by taking into account the wastage
resulting from relying on user estimates during the collection
of training data. We split the data again according to job finish
times, using the first k% for training and the rest for evaluation.
This corresponds to replacing user estimates with predictions
from the trained models after a training period.

Since the goal is to relieve users from the burden of having
to determine the memory requirements of abstract tasks, we do

Fig. 8: Top: 2D histogram showing the joint distribution of
input size and peak memory consumption on the 25,865
jobs of an exemplary abstract task. Dark areas indicate low
density, bright areas indicate high density. Tovar’s method
assigns each job a fixed amount of memory (orange line).
We assign memory proportional to input size (green line).
Compared to an ordinary least squares regression (dashed
line), our allocations minimize the resource wastage resulting
from prediction errors, rather than prediction errors. Bottom:
The exponential wastage resulting from different slope and
intercept values with fixed base b = 2. The dots indicate the
evaluated slopes and intercepts corresponding. The triangle
marks the best found solution, scoring 72% MAQ, which
corresponds to a global optimum.
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Fig. 9: Effective MAQ when using coarse grained user esti-
mates during training and trained models afterwards. Modified
Tovar refers to the state-of-the-art approach with exponential
re-allocation. LWR refers to our method and LWR without
base refers to results when fixing the base to b = 2. Overall
MAQ achieved by LWR is indicated above the bar.

not directly use the estimates provided by IceProd users, since
these estimates are based on profiling the resource usage of
an abstract task. To simulate a scenario without detailed user
estimates, we compute coarse grained user estimates by taking
the median user estimate per task name (e. g., generate, hits,
detector, etc.). This reduces the 321 user estimates (for each
abstract task) to one user estimate for each of 16 task names.

Figure 9 shows the MAQ that can be achieved when training
models during workflow execution. When using 90% of the
data for training, the overall achievable MAQ is roughly the
same as relying completely on user estimates, since the learned
models are applied only to 10% of the jobs. By waiting for
5% of the jobs of each abstract task to finish before replac-
ing user estimates with predictions from the trained models,
overall MAQ can be improved to 71.2%. The relatively small
advantage of our method over the modified state-of-the-art
method (replacing the proposed maximum-strategy with our
exponential failure handling strategy) is explained by our log
analysis in Section V-D. Although some tasks, such as the
one in Figure 8, strongly benefit from per-job allocations, the
overall share of resources allocated to such predictable tasks
is not as large as expected for the IceCube workflows.

C. Parameter Choices

Figure 10 shows the base, slopes and intercepts as chosen
by LWR. The initial choice of 2 for the base is often already
a good choice. Increasing the allocations after failures by
other amounts, e. g., 50% or 80%, can be beneficial in some
cases, but doubling seems to be a sensible default. This is
also apparent from Figure 9, which shows that fixing the base
to b = 2 causes only a minor decrease in memory allocation
quality for this evaluation data set.

Slopes and intercepts concentrate around 0, however, Fig-
ure 11 shows that optimal slopes and intercepts do depend on
the abstract task at hand.

Longer training 
phase improves 
prediction 
quality

But: overall 
MAQ suffers 
from wastage
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Example

• User estimate: start with 4 GB 

• on failure: double request and retry 

• Tovar et al.: start with 4 GB 

• on first failure: retry with largest 
memory usage seen so far 

• on second failure: retry with largest 
possible memory request 

• LWR (this work): run first 5% of tasks 
with 4 GB request 

• for subsequent tasks, use linear 
model on input size; refine model 
as tasks complete 

• on failure: double request and retry

Default IceProd strategy vs. state of the art 

Fig. 8: Top: 2D histogram showing the joint distribution of
input size and peak memory consumption on the 25,865
jobs of an exemplary abstract task. Dark areas indicate low
density, bright areas indicate high density. Tovar’s method
assigns each job a fixed amount of memory (orange line).
We assign memory proportional to input size (green line).
Compared to an ordinary least squares regression (dashed
line), our allocations minimize the resource wastage resulting
from prediction errors, rather than prediction errors. Bottom:
The exponential wastage resulting from different slope and
intercept values with fixed base b = 2. The dots indicate the
evaluated slopes and intercepts corresponding. The triangle
marks the best found solution, scoring 72% MAQ, which
corresponds to a global optimum.

Fig. 9: Effective MAQ when using coarse grained user esti-
mates during training and trained models afterwards. Modified
Tovar refers to the state-of-the-art approach with exponential
re-allocation. LWR refers to our method and LWR without
base refers to results when fixing the base to b = 2. Overall
MAQ achieved by LWR is indicated above the bar.

not directly use the estimates provided by IceProd users, since
these estimates are based on profiling the resource usage of
an abstract task. To simulate a scenario without detailed user
estimates, we compute coarse grained user estimates by taking
the median user estimate per task name (e. g., generate, hits,
detector, etc.). This reduces the 321 user estimates (for each
abstract task) to one user estimate for each of 16 task names.

Figure 9 shows the MAQ that can be achieved when training
models during workflow execution. When using 90% of the
data for training, the overall achievable MAQ is roughly the
same as relying completely on user estimates, since the learned
models are applied only to 10% of the jobs. By waiting for
5% of the jobs of each abstract task to finish before replac-
ing user estimates with predictions from the trained models,
overall MAQ can be improved to 71.2%. The relatively small
advantage of our method over the modified state-of-the-art
method (replacing the proposed maximum-strategy with our
exponential failure handling strategy) is explained by our log
analysis in Section V-D. Although some tasks, such as the
one in Figure 8, strongly benefit from per-job allocations, the
overall share of resources allocated to such predictable tasks
is not as large as expected for the IceCube workflows.

C. Parameter Choices

Figure 10 shows the base, slopes and intercepts as chosen
by LWR. The initial choice of 2 for the base is often already
a good choice. Increasing the allocations after failures by
other amounts, e. g., 50% or 80%, can be beneficial in some
cases, but doubling seems to be a sensible default. This is
also apparent from Figure 9, which shows that fixing the base
to b = 2 causes only a minor decrease in memory allocation
quality for this evaluation data set.

Slopes and intercepts concentrate around 0, however, Fig-
ure 11 shows that optimal slopes and intercepts do depend on
the abstract task at hand.

(NB: not all tasks have this nice of a correlation)

Carl Witt <wittcarx@informatik.hu-berlin.de> 
Jakob van Santen <jakob.van.santen@desy.de>  

Ulf Leser <leser@informatik.hu-berlin.de> 

Predictive Resource Scheduling
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• Role of Simulation Coordination shifting from away from a 
centrally managed production  

• New aim is to coordinate WG-driven production: 

• Storage allocation 

• CPU/GPU utilization (adjust priorities) 

• Coordination between WG needs. 

• Large-scale common productions such as CORSIKA and 
MuonGun are still centrally managed.

Simulation Coordination
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https://grid.icecube.wisc.edu/simulation/DashBoard/
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https://grid.icecube.wisc.edu/simulation/DashBoard/


Sim-Prod Requests
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Sim-Prod Requests

Practically finished

Checking on status: 
should be finished
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https://grid.icecube.wisc.edu/simulation/DashBoard/
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https://grid.icecube.wisc.edu/simulation/DashBoard/


Science and Computing Advisory Panel

Simulation Survey
Juan Carlos Díaz Vélez

WAITING FOR MORE RESPONSES



Which working groups do you belong to?

8 respuestas

Which years of data are you working on? (check all that apply)

7 respuestas

0 1 2 3 4 5

Neutrino Sources WG

Diffuse WG

Oscillations WG
Beyond Standard Model

WG
Cosmic Ray WG

Supernova WG

Callibration WG
Systematics/

Reconstruction WG
Upgrade & Gen2

1 (12.5 %)

5 (62.5 %)

2 (25 %)

2 (25 %)

1 (12.5 %)

0 (0 %)

0 (0 %)

0 (0 %)

1 (12.5 %)

0 2 4 6 8

None
2010/11
2011/12
2012/13
2013/14
2014/15
2015/16
2016/17
2017/18
2018/19
2019/20

0 (0 %)
2 (28.6 %)

6 (85.7 %)
7 (100 %)
7 (100 %)
7 (100 %)
7 (100 %)
7 (100 %)
7 (100 %)

5 (71.4 %)
4 (57.1 %)

The Challenge of Simulation for IceCube https://docs.google.com/forms/d/1vod4e-5r8LGG8uz6P13Ogea...

2 de 12 21/01/21 11:47



Is simulation data crucial for your analysis?

10 respuestas

Simulation Production data: current usage

Do you use data from simulation production?

10 respuestas

Yes, definitely

No, not at all

Would be good to have some
simulation

100%

Yes, I use simulation production
data only

Yes, I use simulation production
data AND my own simulation

No, I use my own simulation

I don't use any simulation

20%
50%

30%

The Challenge of Simulation for IceCube https://docs.google.com/forms/d/1vod4e-5r8LGG8uz6P13Ogea...

3 de 12 24/01/21 16:52



Which datasets did you use so far for your analysis? (use a new line for each
dataset, please)

9 respuestas

11374
11477
11981
20878
20885
20895
11883
11836
12646
11057
20778
20780

"Machine-learning nutau analysis (unblinded early 2019)":
10282
10309
10475
10651
10668
10784

Does simulation production data satisfy your needs?

9 respuestas

0 1 2 3

Yes, I find all the data I
need there!

I need more coincident
signal+backgroun…

I need more systematic
datasets

I need simulation specific to
the event…

3 (33.3 %)

1 (11.1 %)

1 (11.1 %)

2 (22.2 %)

2 (22.2 %)

1 (11.1 %)

1 (11.1 %)

1 (11.1 %)

The Challenge of Simulation for IceCube https://docs.google.com/forms/d/1vod4e-5r8LGG8uz6P13Ogea...

4 de 12 24/01/21 16:52
If you (your working group for you) ever requested datasets from
Simulation Production, please check all that apply

2 respuestas

When did you request the above dataset(s)?

1 respuesta

Along 2020, in multiple steps

You can leave any comments here.

1 respuesta

Do you reprocess LI snowstorm simulation with new 2020 GCD file? (21395,21396,21397
and nominal snowstorm set)

Simulation requirements for your analysis

0 1 2

My dataset was produced
successfully

My dataset was produced,
but flawed

My dataset is running but
not complete …

My dataset didn't start yet

2 (100 %)

0 (0 %)

1 (50 %)

0 (0 %)

The Challenge of Simulation for IceCube https://docs.google.com/forms/d/1vod4e-5r8LGG8uz6P13Ogea...

5 de 12 24/01/21 16:52





If you are working with coincident background, do you think it would be
sufficient to use MuonGun (single muons) instead of CORSIKA?

5 respuestas

Which type of BACKGROUND datasets do you need for your analysis?

6 respuestas

yes
no
maybe

20%

40%

40%

0 1 2 3 4 5

MuonGun

5-component CORSIKA
low energy (<100 Te…

5-component CORSIKA
high energy (>100 T…

Polygonato CORSIKA

3 (50 %)

4 (66.7 %)

5 (83.3 %)

0 (0 %)
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Please specify any other datasets that would be useful for you that were not
covered above

0 respuestas

Todavía no hay respuestas para esta pregunta.

Would you like SimProd to take care of the production of any of the above
datasets? (we will contact you if you check yes, so please make sure you
stated your name in the beginning of this form)

4 respuestas

Non-SimProd simulations

Yes

No50%

50%

The Challenge of Simulation for IceCube https://docs.google.com/forms/d/1vod4e-5r8LGG8uz6P13Ogea...
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Please specify the properties of your dataset(s) (signal/background, flavor,
energy, etc.)

4 respuestas

Nutau Analysis: Muongun background (medium energy)
EHE Analysis (work in progress): Very high energy NuE, NuMu, NuTau (+ eventually E^-1
CORSIKA)

Dark matter signal from the center of the Earth, all flavors, energy depending on the dark
matter mass (<10 TeV in any case)

I produce the low energy muongun targerted for deepcore. (This is the background for
our analysis/WG. Josh Hignight previously and Wing Ma currently produce the genie
simulation for our analysis/WG. )

signal simulation for realtime analyses

Do you use any simplifications/tricks to speed up your simulation? Please specify.

3 respuestas

Nutau Analysis: Throw away a fraction of events after muon propagation based on
energy losses
EHE Analysis: Some approximations + table based photon propagation

I use the star pattern to simulate the event instead of the detector physical location

Yes, we use the inner target cylinder feature in MuonGun to target the DeepCore volume.
We also use a KDE I developed to target the portions of energy/coszen phase space that
are most likely to survive our event selection and be present in our final level sample.
http://code.icecube.wisc.edu/svn/sandbox/kleonard/kde_filter/

The Challenge of Simulation for IceCube https://docs.google.com/forms/d/1vod4e-5r8LGG8uz6P13Ogea...
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Why did you decide to produce your own simulation?

5 respuestas

If you checked "I had special requirements that couldn't be handled by SimProd."
above, please specify.

3 respuestas

See the speedup section above, let me know if you have any further questions about this

LeptonInjector

There is lot of optimization involved in choosing the desired target cylinder settings and
energy/coszen KDE settings for DeepCore, so we (Andrii Terliuk previously, but now
myself) had to learn how to produce MuonGun so we could create small test sets to
explore these parameters and determine what was appropriate for our analysis. Then
once we had picked our settings, it was easy enough to just plug them back in and launch
the production of a full set. My understanding is that SimProd could help with the last
part (making the final set once we know the desired settings), but by that point most of
the groundwork was already complete so it was easier to just finish it ourselves.

Feedback & Comments

0 1 2 3

It was more convenient to
do it myself.

It was faster to do it myself.
Comparable SimProd

datasets were availa…

Comparable SimProd
datasets were not fu…

I had special requirements
that couldn'…

3 (60 %)

2 (40 %)

0 (0 %)

0 (0 %)

1 (20 %)

0 (0 %)

3 (60 %)

1 (20 %)
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Let us know what you think!

4 respuestas

The wikipage https://wiki.icecube.wisc.edu/index.php/Simulation_Production#Datasets

can be more detailed and updated. For example, dataset 11820 can't be located on

cobalt.

Thanks!

I am not sure if I qualify for this feedback.

can we have filters on iceprod2 website to select a specific generator or generation year?

with old ice-rod it was easy, now it's hard to find what I want!

Google no creó ni aprobó este contenido. Denunciar abuso - Condiciones del Servicio - Política de Privacidad
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IceTray

Propagate Muons 

CORSIKA  
Server

Propagate Photons

Detector Simulation

I3MCPE

Generator Module

How Dynamic Stack works
CLSimServer

GPU

CLSimClient

PROPOSAL

Generates Primary  
Cosmic Ray Particles 
(Similar to MuonGun)

Simulates  
Detector Response

Propagate Air Shower

CLSimClient passes 
individual particles from 

the MCTree to the 
CORSIKA Server, to 
PROPOSAL to the 

CLSimServer

I3MCTree

I3MCPE are created 
directly from the output 

of each individual 
CLSim propagation 

DYNSTACK CORSIKA

• Replaces CORSIKA’s post-reaction particle stack with a C++11 plugin 

• General API for doing things like the neutrino kill threshold, plus helpful extras (take 
configuration from the steering card, manipulate event headers/trailers, etc) 

• In mainline CORSIKA since 7.56 (modulo typos) 

• Write plugins in C++11 without touching corsika.F, depend only on the standard library 

• Build a better CORSIKA for in-ice background simulation.

• Reduce memory and disk requirements for high energy simulations.

Kevin Meagher & Jakob van Santen

Analysis-specific, targeted background simulation



MuonGun (IceCube implementation of MUPAGE)
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arXiv:0907.5563v1 [astro-ph.IM] 31 Jul 2009 

MuonGun - Software is stable but parameterizations need to be updated. 
Re-parametrization with SIBYLL 2.3c. This requires a large volume of 
CORSIKA simulation (no photon propagation). In the past this was 
accumulated over many datasets in f2k format. 

• Current parametrization based on SYBILL 2.1 

• MuonGun parametrization needs to be updated with new hadronic 
interaction models.  

• This requires quite a bit of CORSIKA which in the past was 
produced and saved in f2k format as a side effect of standard 
production. 

• We are in the process of producing CORSIKA showers in I3 format 
as a backfill on CPU nodes. 



Photon Propagation
• µ energy lost + cascades ➙ photons ➙ p.e.


• Photon propagation : ice properties + PMT response + DOM 
glass/gel

• Direct photon tracking (CLSim, PPC)

• Pre-generated lookup splined table : 


• I3PhotonicsHitMaker

• Amplitude and time distribution


• Hybrid photon tracking

• HitMaker + CLSim

• PPC originally written for CUDA libraries

• CLSim written for OpenCL

• PPC ported to OpenCL

• CLSim ported to CUDA

• New emerging technologies: 


• HIP, SyCL, OneAPI, C++20/23



IceCube Collaboration MeetingJ. C. Díaz-Vélez

Spencer N. Axani 
saxani@mit.edu

Single Photo-Electron 
Templates
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The SPE Templates are now 
used in our simulation.

SPE Templates: 
The individual in-ice DOM 
single photon charge 
distributions.

We expect that including the SPE 
Templates will introduce a shift in 
the efficiency of ~130%.

Code has been reviewed and 
approved and is currently part of 
the standard simulation.

Updated noise parameters in 
Vuvuzela due to change.



Parallelization 

• Our current model is already optimally parallel for CPU performance.  

• We basically have multiple instances of IceTray running (1 per core) on a 
node (i.e. embarrassingly parallel)  

• Any amount of parallelization involving inter-process communication and 
locking will reduce performance. 

• There are some non-CPU performance reasons to parallelize, namely RAM 
limitations. 

• You could reduce memory utilization by sharing tables, splines, etc. 

• One of the limitations in using threads in IceTray is the Global Interpreter 
Lock (GIL) in boost-python.  

• This is called whenever entering Python and can lead to deadlock when 
used in combination with thread locks. 

• Another issue is determinism from calls to random number generators. This 
can be addressed by using parametrized RNGs that can produce very large 
number of independent threads and assign a separate thread to each 
atomic computing task. 



• Event-level parallelism 
• This is essentially what we are doing now.  
• You could improve things by sharing memory between threads (or processes 

prior to fork()). 
• Driver module reads input file and dispatches events to workers round-robin. 
• Nathan wrote an implementation of this a few years ago: 

• http://code.icecube.wisc.edu/svn/sandbox/nwhitehorn/i3mpi 

• Module-level parallelism 
• One module per thread/process. Requires some work in organizing break up 

for load balancing.  
• Assigns modules (or group of modules) to different threads/processes 
• Load balance could be improved by using thread pools. But this requires 

being able to move modules from one thread to another. 

• Intra-module parallelism 
• Requires direct changes to each module that utilizes non-negligible CPU 
• Otherwise, performance would drop if threads are waiting idle for work. 

Parallelization 

http://code.icecube.wisc.edu/svn/sandbox/nwhitehorn/i3mpi
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flow of experimental and simulation data

data on-line off-line physics analyses
experimental filter @ 

South Pole
level 1 filtering 

(recreate on-line filter)

level 2 processing level 3 processing physics

spade working groupsP&F computing core computingDAQ

working groupsdistributed computing

simulation 
generation

level 3 processing physicslevel 2 processing

level 1 filtering 
(recreate on-line filter)



Oversampling in CORSIKA

• Can accumulate statistics much faster.

• But events are not statistically independent

CORSIKA Livetime

IC86 Total Generated Livetime

(2011 not included) 

• A number of older datasets have 
been replaced as a result of 
previously reported issues.

• 2012 datasets are currently being 
reprocessed with pass2

• 2011 datasets will also be 
reprocessed with pass2.

• Much of this is L3 CSD.

• Datasets are distributed on different 
sites (DESY, CEPH, etc.)

• Starting L3 processing (output to I3 
data warehouse)

• New MuonGun prod. starting
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NOT UP TO DATE



Upgrade Task List
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Upgrade Task List (continued)


